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ABSTRACT
Modern radars transmit pulses with wide overall bandwidth
to achieve high range resolution. In the case, when such
wideband pulses are undesirable due to the expensive hard-
ware needed to support the wide instantaneous bandwidth,
frequency-stepping technique that allows the transmission
of extremely wideband waveforms by a radar with a rela-
tively small instantaneous bandwidth is used.

In this paper we consider a new family of stepped-
frequency waveforms designed for the purposes of high
range resolution. We show that a suitable choice of wave-
form’s parameters leads to the essential suppression of
its autocorrelation function (ACF) sidelobes. We perform
analysis of the set of parameter values that provide sidelobe
suppression below some predetermined level.

KEY WORDS
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1 Introduction

A stepped-frequency waveform is a collection of short nar-
rowband pulses separated by time intervals that are suffi-
cient to receive scattering echoes from the targets located
at some range of interest. Once the echoes from all the
pulses have been received, they, then, are processed in the
receiver collectively.

The center frequencies of the pulses are shifted with
respect to each other, as shown, for example, in Figure 1
where a stepped-frequency LFM pulse train with a constant
frequency step between consecutive pulses is schematically
depicted. The presence of the frequency shifts allows one
to transmit stepped-frequency waveforms with, virtually,
arbitrary overall bandwidth by a radar with a quite small
instantaneous bandwidth. This fact is regarded [1, 2] as the
main advantage of these waveforms and makes them useful
in high range resolution radars.

Waveforms with wide overall bandwidth created syn-
thetically were introduced in the 1960’s [3]. As pointed out
in [4], the S-band Tradex radar (located on the U.S. Army’s
Kwajelein Missile Range facility) implemented waveforms
of this type in 1974 and experiments using the Aegis SPY-1

radar, the Patriot radar, and RSTER have been performed
since then.

As usually happens, stepped-frequency waveforms
have some disadvantages. Among them, the appearance
of relatively high undesirable spikes (range sidelobes and
grating lobes) in the profile of the magnitude of the wave-
form’s ACF is thought to be the main one. It turns out, how-
ever, that, if both the instantaneous bandwidth and the total
processing bandwidth of a radar are given, right choice of
the frequency shifts between pulses, the number of pulses
to be processed and/or their amplitudes leads to essential
reduction of delay sidelobes. Indeed, any changes in the
values of the parameters mentioned above cause reshaping
the waveform’s spectrum, introducing frequency weighting
– the main approach for achieving time sidelobes suppres-
sion.

Recent publications [4-7] have addressed the issue of
high ACF sidelobes in stepped-frequency LFM trains. Pa-
pers [5, 6] have discussed different approaches leading to
either acceptable suppression or complete elimination of
the grating lobes by appropriate choice of the constant fre-
quency step. Publications [4, 7] claim that it is possible
to design a resulting waveform whose spectrum would ap-
proximate one of the known weighting functions. It can
be done either by increasing the amplitude of the pulses
[7] or by staggering the uniform stepping in the frequency
domain [4]. In both cases, the number of pulses consti-
tuting the train controls the quality of such approximation.
As the result, desired suppression of time sidelobes can be
achieved.

In this paper we propose a new systematic approach
for designing stepped-frequency LFM pulse trains produc-
ing the ACF whose peaks are lowered below some prede-
termined level. It is based on the usage of variable fre-
quency steps that are introduced by means of specific rela-
tionships between the positions of the center frequencies of
the pulses. Our approach (which is analytical rather than
numerical) advantages from the fact that the ACF of the
resulting waveform is available in the closed form. This
gives us possibility to search for waveforms with a desired
threshold level by analyzing the set of their parameter val-
ues. Suitable selection of the parameters allows us to de-
sign a variety of LFM trains with excellent ACF profiles.



2 Non-uniform Stepped-Frequency Train of
LFM Pulses

In this paper we study the performance of compound wave-
forms we define as follows.

We start with a traditional coherent stepped-frequency
train s(t) of N LFM pulses, depicted in Figure 1. Its com-
plex envelope is given by (see [2, 5])

s(t) =
1√
N

ejπkN t2
N−1∑
n=0

sp(t− ntr), (1)

where

sp(t) =
1√
tp

rect

(
t

tp

)
ejπkpt2 (2)

is an LFM pulse of durationtp andtr is the time repetition
interval which is assumed to be chosen such that the duty
cycle, tr/tp, is greater than 2. We also assume that the
frequency slopeskN andkp are positive. The first factors
in both formulas (1) and (2) are added to maintain the unit
energy of waveformss(t) andsp(t), respectively.
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Figure 1. Stepped-frequency LFM pulse trains(t) with
constant frequency step∆f .

We will denote the bandwidth of each subpulse,
s̃n(t) = ejπkN t2sp(t − ntr), in train (1) byBN , that is
BN = (kN + kp)tp > 0. Note that the presence of the
second term,ejπkN t2 , in the factorization (1) creates a con-
stant frequency step∆f = kN tr(0 < ∆f ≤ BN ) between
the center frequencies of consecutive subpulses in the train
s(t) (see Figure 1). This leads to the essential broadening
of the waveform’s total bandwidth which becomes equal to
Bs = BN + (N − 1)∆f . The total time duration ofs(t) is
Tp = (N − 1)tr + tp.

Next, we use the waveforms(t) as a single compo-
nent to create a uniform train ofM subpulsesup(t) = s(t)
(see Figure 2):

uM (t) =
1√
M

M−1∑
m=0

up(t−mTr) (3)

with the pulse repetition intervalTr > 2Tp.
Finally, we add an LFM with the frequency slope

kM (kM > 0, kM 6= kN + kp) to the entire train (3) (see
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Figure 2. Non-uniform stepped-frequency pulse train
uM (t).

Figure 3):

u(t) = uM (t) ejπkM t2 =
1√
MN

ejπkM t2

×
M−1∑
m=0

ejπkN (t−mTr)2
N−1∑
n=0

sp(t− ntr −mTr).
(4)

As the result, we obtain a non-uniform train ofNM
pulses that can be divided intoM portionsu(1)(t), u(2)(t),
. . . , u(M)(t), where

u(i)(t) = ejπkM t2up(t− (i− 1)Tr)

with t ∈ [(i− 1)Tr, (i− 1)Tr + Tp], i = 1, 2, . . . , M.
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Figure 3. Time-energy (top) and time-frequency (bottom)
distributions of non-uniform LFM pulse trainu(t) with
nonconstant frequency step.

Each such a portionu(i)(t) of the ”outer” trainu(t) is an
”inner” periodic stepped-frequency train ofN pulses, each
of durationtp, with the ultimate bandwidth

B = BN + kM tP = (kp + kN + kM )tp > 0. (5)

After adding the LFM in (4), the ”inner” frequency step
between consecutive pulses inu(i)(t) becomes

∆fin = ∆f + kM tr = (kN + kM )tr > 0. (6)



We suppose that there would be either some frequency
overlap between neighbor components ofu(i)(t) (∆fin <
B) or the uniform energy distribution over the frequency
bandBin of u(i)(t) (∆fin = B), which is equal toBin =
B + (N − 1)∆fin > 0. We recall that the total duration of
u(i)(t) (i = 1, 2, . . . , M) is Tp.

At the same time, ”inner” trainsu(1)(t), u(2)(t),
. . . , u(M)(t) form the ”outer” trainu(t). In the time-
frequency domain, the band of each trainu(i)(t) (i =
2, 3, . . . , M) is shifted with respect to the band ofu(i−1)(t)
by the constant frequency step

4fout = kMTr > 0. (7)

Again, we suppose that∆fout ≤ Bin. Finally, we note that
the total time duration ofu(t) is T = Tp + (M − 1)Tr =
tp + (N − 1)tr + (M − 1)Tr and the combined frequency
deviation ofu(t) is Bout = Bin + (M − 1)∆fout = B +
(N − 1)∆fin + (M − 1)∆fout.

3 Autocorrelation Function of Waveform (4)

It is well-known (see, for example, [2]) that the ACF of a
pulse train withtr ≥ 2tp is a collection of nonoverlapping
envelopes distributed along the time-delay axis. Among
those envelopes, the central one, corresponding to the time-
delay interval|τ | ≤ tp and containing the main lobe, has
the most practical importance, since, primarily, its shape
evaluates the quality of radar measurements. In this sec-
tion, we derive the analytical representation for the central
envelope of the ACFRu(τ) of u(t) and analyze its shape.

It is shown in [5, 6] that, for|τ | ≤ tp, the magnitude
of the ACFRs(τ) of ”simple” stepped-frequency train (1)
is the two-term product:

|Rs(τ)| = |Resn
(τ)| ·

∣∣∣∣
sin(Nπτ4f)
N sin(πτ4f)

∣∣∣∣. (8)

The first factor in (8) is the magnitude of the ACF of a
single subpulsẽsn(t) constituting the train (1), whereas the
second factor is a periodic sinc function which appears due
to the uniformity ofs(t).

We recall from the previous section that waveform
u(t) can be thought as a stepped-frequency train ofM
subpulsesu(i)(t) with the constant frequency step∆fout.
Hence, similar to (8), we obtain, for|τ | ≤ Tp, that
|Ru(τ)| = |Ru(i)(τ)| · |R3(τ)|, where

|R3(τ)| =
∣∣∣∣
sin(Mπτ∆fout)
M sin(πτ∆fout)

∣∣∣∣ (9)

and|Ru(i)(τ)| represents the magnitude of the ACF of any
subpulseu(i)(t). Since all the|Ru(i)(τ)| (i = 1, 2, . . . ,
M) are the same, we write, without loss of generality,
|Ru(1)(τ)| instead of|Ru(i)(τ)| in our derivation below.

Now we note thatu(1)(t) is itself a stepped-frequency
train ofN componentŝsn(t) = ejπkM t2 s̃n(t) with the con-
stant frequency step∆fin. So, again by analogy with (8),

we have|Ru(1)(τ)| = |R1(τ)| · |R2(τ)|, where|τ | ≤ tp,

|R1(τ)| = |(1− |τ |/tp) sinc(Bτ (1− |τ |/tp))| (10)

is the magnitude of the ACF of any single subpulseŝn(t)
in the component trainu(1)(t), and

|R2(τ)| =
∣∣∣∣
sin(Nπτ∆fin)
N sin(πτ∆fin)

∣∣∣∣ . (11)

Finally, based on the above discussion, we conclude
that, for|τ | ≤ tp,

|Reu(τ)| = |R1(τ)| · |R2(τ)| · |R3(τ)|, (12)

where the factors in the right-hand side are defined by for-
mulas (10), (11), and (9) and the quantitiesB, ∆fin, and
∆fout they contain are given by relations (5), (6), and (7),
respectively.

Thus, the ACF of proposed here waveformu(t) is
the three-term product (12), where the first factor repre-
sents the ACF of any single subpulse forming the train
and |R2(τ)| and |R3(τ)| are periodic sinc functions that
appear due to the ”inner” and ”outer” trains described in
the previous section. Although the structure of|Ru(τ)| is
more complicated than that one for the ACF of a traditional
stepped-frequency LFM train (shown in (8)), each term in
the product (12) admits a simple geometric interpretation
(see Figure 4 for details). Evidently, the relationship be-
tween the shapes of|R1(τ)|, |R2(τ)|, and |R3(τ)| deter-
mines the|Ru(τ)|’s profile and, as consequence, the height
of the|Ru(τ)|’s sidelobes.

Depending on their sources and locations, the side-
lobes of|Ru(τ)| can be classified into groups in the fash-
ion similar to the classification of the|Rs(τ)|’s sidelobes.
Namely, we distinguish grating lobes (that are caused by
the presence of two last factors in (12) and located near the
points of their maxima, i.e.

τgr in
p =

p

∆fin
and τgr out

q =
q

∆fout

with p = 1, 2, . . . , btp∆finc andq = 1, 2, . . . , btp∆foutc),
a few range sidelobes surrounding the main lobe, etc.

Figure 4 illustrates a typical profile of|Ru(τ)| with
indication of two important groups (range and grating
lobes) of time sidelobes. (Since the magnitude of the ACF
is symmetric with respect to the origin, in all the figures
presented here, we show the shape of its central envelope
for the delay interval0 ≤ τ ≤ 1 only.) These groups would
normally contain all the high sidelobes of|Ru(τ)|. We de-
note two first (out of total four) range sidelobes near the
main lobe of|Ru(τ)| by r1 andr2. Thegis (i=1,2,. . . , 7)
indicate all the grating lobes presented in the ACF’s profile.
Note that most of the grating lobes are located not exactly
at the maxima of|Ri(τ)|(i = 2, 3), but at their close vicin-
ity. The lobesg2, g4, andg6 are caused by each of two last
factors in (12), whileg1, g3, g5, andg7 arise due to the third
one only.
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Figure 4. Top: the magnitude of the ACF ofu(t) with N =
3, M = 5, ∆fintp = 3.5,∆fouttp = 7.175, andBtp =
6.3 (zoom on the interval0 ≤ τ/tp ≤ 1). Bottom: the
relationship between|R1(τ)| (solid),|R2(τ)| (dashed), and
|R3(τ)| (dotted).

4 Suppression of Autocorrelation Sidelobes
in Train (4)

As can be noticed from Figure 4, the ACF produced by train
(4) contains, in general, a number of relatively high peaks
essentially reducing the waveform’s resolution capabilities.
Analyzing the shape of the factors|Ri(τ)|(i = 1, 2, 3),
however, one can observe that it is possible to choose the
u(t)’s parameters such that the values of two of those three
factors would be relatively small at the points where the
third one attains its largest values. Hence, multiplying
the factors altogether should result in the ACF that takes
on small values along the time-delay axis. Furthermore,
a quite simple analytical representation (12) for|Ru(τ)|
and relatively small number of the waveform’s parameters
make it possible to perform a systematic search for wave-
forms whose ACF sidelobes lowered below a desired level.
Below we describe our approach and present results we
have obtained.

4.1 Preliminary Comments

In this subsection we describe briefly the set of assumptions
and restrictions we have made while analyzing the shape of
|Ru(τ)|.

First, we assume that the total numberK = NM
of pulses in the train (4) is given and form the setΛ of
all possible two-term factorizations ofK with both factors
greater than unity, i.e.Λ = {(n,m) : n,m ∈ Z+, n,m ≥
1, n·m = K}. Then, for each pair(n,m) ∈ Λ, we letN =
n, M = m and look for values of the remaining parameters
(i.e. B, ∆fin, ∆fout, andtp) that would guarantee a low
level ofu(t)’s time sidelobes.

In what follows, we restrict the range of the parame-
ters under consideration by the following set of conditions:

i) We recall from section 2 that∆fin ≤ B and∆fout ≤
Bin. The last is equivalent to∆fout/∆fin ≤ B/∆fin +
N − 1.
ii) We require that|Ru(τ)|(0 < τ < tp) would have at
least one grating lobe caused by each of the terms|R2(τ)|
and |R3(τ)|. It can be done, if both∆fin and∆fout are
greater than unity.
iii) We denote the first (counting from the origin) positive
null of |Ri(τ)| by τnull

i (i = 1, 2, 3). It can be noticed from
(10), (11), and (9) thatτnull

1 ≈ 1/B, τnull
2 = 1/(N∆fin),

andτnull
3 = 1/(M∆fout). Now we suppose that the first

null τnull of |Ru(τ)| (that manages the ACF main lobe
width – one of most important resolution characteristics)
would be originated by the first null of either|R2(τ)| or
|R3(τ)|, that is τnull = min{τnull

2 , τnull
3 }. This fact im-

plies thatτnull
1 ≥ min{τnull

2 , τnull
3 }. In other words, we

obtain thatB/∆fin ≤ N , if ∆fout/∆fin ≤ N/M , and
B/∆fout ≤ M , otherwise.

We remark here that the first (from the main lobe)
grating lobe of |Ru(τ)| arises near the pointτgr

min =
min{τgr in

1 , τgr out
1 } = min{1/∆fin, 1/∆fout}. That is

why below we refer to the intervalsIr = (τnull, τgr
min) and

Igr = [τgr
min, tp) as of range sidelobes and grating lobes re-

gions, respectively.
iv) Note that if one seeks to push all the sidelobes, appear-
ing in the grating lobes region, below some predetermined
levelε (hereε is some small, a priori chosen, value defining
the desired level of sidelobes suppression), then, generally
speaking, only a few (if any) time sidelobes, belonging to
a portion ofIgr, should be pushed down in order to satisfy
this desideratum. Indeed, since all the factors in (12) do not
exceed 1 and, for anyτ > 0, the |R1(τ)| admits an upper
estimate

|R1(τ)| = | sin (πBτ (1− |τ |/tp)) |
πBτ

≤ 1
πBτ

, (13)

we conclude that the inequality|Ru(τ)| ≤ ε will be auto-
matically fulfilled for all τ ≥ τ∗, whereτ∗ = 1/(πBε).
In particular, all the peaks from the grating lobes region
will be lowered below theε-level, whenτ∗ ≤ τgr

min. This
assumption yields thatτ∗ ≤ τgr in

1 andτ∗ ≤ τgr out
1 or, eq-

uivalently, B/∆fin ≥ 1/(πε) andB/∆fout ≥ 1/(πε).
We note that, in this case, the overlap ratios,B/∆fin and
B/∆fout, become large. This leads to significant (and
undesirable) reduction of the waveform’s total bandwidth
Bout. So, we eliminate this case from further discussion
and setB/∆fin < 1/(πε) andB/∆fout < 1/(πε).

Finally, we form the setΩ(n,m) ⊂ R3 of quantities
(∆fintp, B/∆fin,∆fout/∆fin) satisfying the conditions
i)-iv) and perform numerical search for members ofΩ(n,m)

that correspond to waveforms producing desired ACF pro-
files. In our study, we are interested in the waveforms
whose ACF exhibit a predetermined (and, generally, dif-
ferent) levels of sidelobes suppression overIr andIgr (we
write ε1 and ε2, respectively, for the quantities defining
those levels). Therefore, we set the search criteria as fol-



lows:

a) |Ru(τ)| ≤ ε1, τ ∈ Ir; b) |Ru(τ)| ≤ ε2, τ ∈ Igr. (14)

As the result, we obtain the ”output” setΩ(µ1,µ2)
(n,m) ⊆ Ω(n,m)

consisting of the parameter values of interest. (Hereµi(i =
1, 2) represents the desired level of suppressionεi ex-
pressed in dB units).

4.2 Numerical Results

In this subsection we demonstrate some results we have ob-
tained while studying two variants of problem (14), corre-
sponding to the ACF peaks suppression over: 1) the grating
lobes region only (here we setε1 = 1), or 2) both regions
of interest.

We have conducted the numerical search for the case,
whenK = 35 (then, clearly,Λ = {(5, 7), (7, 5)} and we
have the setsΩ(5,7) andΩ(7,5) of parameter values to search
in), under additional assumption that∆fintp takes on inte-
ger values up to 200.

Our analysis of the first variant of problem (14) shows
that it is possible to push the peaks of interest down below
the level as low as -50 dB. Figure 5 illustrates the ACF of
one of the waveforms we have found.
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Figure 5. Partial ACF ofu(t) with N = 5,M = 7,
∆fintp = 21, ∆fouttp = 2.97, andBtp = 94.5. Top:
zoom on the interval0 ≤ τ/tp ≤ 1. Middle: zoom on the
interval0 ≤ τ/tp ≤ 0.1. Bottom: the relationship between
|R1(τ)| (solid), |R2(τ)| (dashed), and|R3(τ)| (dotted).

Figures 6-9 are related to the case of overall sidelobe
suppression. Figure 6 demonstrates the setsΩ(−40)

(7,5) and

Ω(−40)
(5,7) (we writeΩ(−40)

(n,m) for Ω(−40,−40)
(n,m) ). As can be seen

from the figure, parameters providing the desired threshold
level form non-overlapping regions in theR3. Evidently,
one can construct numerous LFM trains satisfying this cri-
teria. A typical ACF for a waveform with the parameters
chosen fromΩ(−40)

(7,5) is drawn in Figure 7.
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Figure 6. Pictorial representation ofΩ(−40)
(7,5) (top) and

Ω(−40)
(5,7) (middle). Bottom: The elements ofΩ(−40)

(7,5) (de-

noted by ’·’) andΩ(−40)
(5,7) (’×’) for ∆fintp = 150.

It appears that the best level of suppression we have
been able to find forK = 35 is achieved by small num-
ber of waveforms associated withΩ(−40,−45)

(n,m) , (n,m) ∈ Λ.
The ACFs produced by two of them are shown in Figures 8
and 9. The overall level of time sidelobes suppression, for
the ACFs depicted, is -41.3dB and -42dB, respectively.
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Figure 7. Partial ACF ofu(t) with N = 7,M = 5,
∆fintp = 150, ∆fouttp = 115.92, andBtp = 825. Top:
zoom on the interval0 ≤ τ/tp ≤ 1. Bottom: zoom on the
interval0 ≤ τ/tp ≤ 0.03.
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Figure 8. Partial ACF ofu(t) with N = 7,M = 5,
∆fintp = 21, ∆fouttp = 48.93, andBtp = 220.5. Top:
zoom on the interval0 ≤ τ/tp ≤ 1. Bottom: zoom on the
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5 Conclusion

In this paper we have proposed a new family of wave-
forms that have been designed by a composition of two
different stepped-frequency LFM trains with constant fre-
quency steps between the center frequencies of the consec-
utive pulses. We have showed that, despite of the wave-
form’s complicated structure, its ACF could be written in
the closed form. We have used this fact to perform a sys-
tematic analysis of the set of the waveform’s parameter
values, aimed to study their influence on the ACF shape.
As the result, we have been able to find a large number
of family members producing the ACF with excellent pro-
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Figure 9. Partial ACF ofu(t) with N = 5, M = 7,
∆fintp = 9, ∆fouttp = 12.02, andBtp = 67.5. Top:
zoom on the interval0 ≤ τ/tp ≤ 1. Bottom: zoom on the
interval0 ≤ τ/tp ≤ 0.16.

files. Our analysis, presented, in part, in the paper, clearly
reveals that the proposed waveforms have desirable built-in
characteristics such as low range sidelobes and low grating
lobes, which, along with the other advantages associated
with the stepped-frequency waveforms, make them attrac-
tive for usage in a high range resolution radar.
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