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ABSTRACT

In this paper, we consider an application of the Empirical Mode Decomposition (EMD) introduced by Norden E. Huang
in 1996 to the compression of 3D hyperspectral sounding data. The EMD is a new data analysis method which is based
on expansion of the data in terms of Intrinsic Mode Functions (IMF). These IMFs are based on and derived from the data
set. Since EMD adaptively represent the signal as a sum of ”well behaved” amplitude/frequency modulated components,
we found it very well suited for the whitening part of the compression scheme.
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1. INTRODUCTION

In this paper we present a lossless algorithm for compression of the signals from NOAA’s environmental satellites. The
project’s aim is the design, analysis, and implementation of compression techniques that are suitable for the next-generation
GOES-R instrument. We are using current spacecraft to simulate data from the upcoming GOES-R instrument and focusing
on Aqua Spacecraft’s AIRS instrument in our case study.

The AIRS is a high resolution instrument which measures infrared radiances at 2378 frequencies ranging from 3.74-
15.4 8:9 . The AIRS takes 90 measurements as it scans 48.95 degrees perpendicular to the satellite’s orbit every 2.667
seconds. We use Level 1A digital counts) data granules, which represent 6 minutes (or 135 scans) of measurements.
Therefore, our data set consists of a 90x135x2378 cube of integers ranging from 12-14 bits.

Figure 1. AIRS Scan Geometry (graphic courtesy of NASA JPL).
;
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Note that noise in the channels introduce added complexity in compression. Therefore, in practice, we utilize only 1502
out of 2378 channels picked by NOAA for their favorable characteristics. Otherwise, we would need to add an additional
step to detect these channels prior to running our compression algorithm.

2. OVERVIEW OF COMPRESSION SCHEME

The algorithm consists of the following steps:

1. Channel Partitioning

2. Whitening

3. Projection

4. Estimated entropy coding of the residuals

Figure 2. The stages of the compression scheme can be visualized in the above diagram.

In what follows, we give a brief description of each step of the algorithm.

Step 1. During the first stage, the original
���������
	����
	����

granule �������������
� , where � � �"!
����#�$ � �%!&����	�#(' ���!)��	��
�
, is subdivided into 3 bands of size *,+ , *,-.� 	��0/

, *213�54 ��� , *263� ��� 4 , and 7 6+�89- *2+:� ��	����
. The division

accounts for the fact that the range of the digital counts ������� varies (12, 13, and 14 bits) with channel index
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���"�;���
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@ A�B89- will be processed independently.

Step 2. The purpose of the whitening stage is to transform the data so that its distribution is as close to normal as
possible. The cost of this transformation is added memory utilization (due primarily to record-keeping data structures
needed for the decompression procedure). There are several theorems 1 which state an optimality (in some sense) of the
Karhunen-Loève transform provided a normal distribution of the data. Therefore, if the whitening stage is ”cheap” in terms
of memory utilization, overall transformation (steps 1-4) is nearly optimal. The ratio of memory needed for step 2 with



respect to the total memory occupied by the original granule varied in the 10 considered granules, but on average was
approximately 1288:1, i.e. about

� � ������� of the memory used by the original granule is needed to force the data to have an
almost normal distribution. We felt that this was a relatively low cost for a known optimal approach and so have proceeded
along that course. This step is based on Empirical Mode Decomposition. A brief overview of the EMD and its role in the
step 2 of our algorithm are given in section 3.

Step 3. As alluded to in the overview of step 2, we apply the Karhunen-Loève transform which is known to have the
smallest average distortion when approximating a class of functions by their projection on � orthogonal vectors chosen a
priori. 1 If the goal was to develop a lossy compression algorithm, our primary cost would be the error and we would have
to define a notion of acceptable average error to determine the number � of projection vectors. Since we design a lossless
compression algorithm, our primary cost is memory utilization and we need to define a notion of minimal memory space
to save both projection vector coefficients and the residuals of the projection. The number � + of the projection vectors is
chosen to address this concern. Thus, during this step the global part of the information from each of the 3 bins is saved
in � + packets, where each packet contains a

��� � ����	
image of the quantized coefficients ��	� and a

�2� * + quantized
projection vector �
 � , resulting in ��� ����
 ���
	�� * +�� elements in total. The residuals are saved separately through the last
(approximated entropy coding) stage of our lossless compression algorithm.

Step 4. After step 3, we have
���,� ���
	2� * + granules of residuals that are approximately normally distributed but

have a lower entropy (due to properties of Karhunen-Loève transform). In our computations, the entropy on the average
decreased from 8.35 to 3.5 during step 3. Therefore, the lower bound on the number of bits per residual entry � �?��� is 3.5
bits. We build our Huffman codebook 6 based on a normal distribution with variance computed from the residuals, rather
than an actual codebook. This mitigates issues with errors during transmission, and also makes our program slightly more
efficient.

3. EMPIRICAL MODE DECOMPOSITION

In this section we will give a brief overview of the Empirical Mode Decomposition (EMD) introduced by Norden E.
Huang. - The basic idea is to decompose the given (possibly non-linear and non-stationary) signal >������ as

>������ � @�
�B89- > � �����

#

where the components > ������� in some sense are independent of each other and contain both frequency and amplitude
variations.

The main idea behind the EMD technique is to represent signal >������ as a set of intrinsic mode functions. A function is
an intrinsic mode function if: (1) the number of extrema and the number of roots are either equal or differ at most by one.
(2) at any point, the mean value of the envelope defined by the local maxima and the envelope defined by the local minima
is zero. This class of functions is well-suited for describing instantaneous frequency even in the non-linear case.

An iterative procedure for decomposing a signal >������ into IMFs has been presented by Huang, - and can be described
as the following recursion:

1. Find all local extrema of >������
2. Find the ”envelope” of >������ by interpolating through all local maxima to obtain >������������ and through all local minima

to find >����  !�����
3. Compute the average 9"����� �#� > ���  ����� � > ����� �����$�$% �
4. Find ”fast oscillations” or details of the function by subtracting the average 9&����� : '(����� �*)(�����,+ 9"����� .
5. Repeat steps 1)-4) on 9"����� until 9"����� is a monotonic function.



The last 9&����� is called the trend of the input signal >������ .
We should note that step 2) is based on interpolation and therefore has infinitely many solutions. Which of these

solutions applies is still an open problem. In practice, splines are often used as an interpolator and steps 2)-4) are repeated
(so called sifting process) until function ' ����� is an IMF.

We will consider the given
��� � ����	�� *,+ granule < � ��>������ � as a collection of
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discrete signals >���� � '�� and

use EMD to decompose an average
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into a set of intrinsic mode functions � ' + � and the trend 9 (see EMD stage in fig. 2). If the components of this decom-
position are linearly independent, they can be used as the basis of subspace 	 spanned by vectors ' + and 9 . The discrete
signals > ��� � '�� then can be projected on the subspace 	 :
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where � > ��� # ' + � � 7 @ �B89- > �?� � '�� ' + � '�� , � �' + � is a dual Riesz basis, i.e. � ' + # �' � �,��
 � � + '��
, 
 � '�� is the discrete Dirac

function, and � is the residual vector. We have observed that AIRS data projects exceptionally well on the subspace
spanned by EMD components leaving almost normally distributed residuals ����� � '�� .

The EMD technique has been applied with success in a number of applications, but, although it is very simple in its
principle, it lacks theoretical fundamentals. There have been attempts at theoretical expositions of the EMD method for
some particular cases (e.g. for uniformly distributed noise � and fractal Gaussian noise � ). In general, however, the EMD
method is defined as the output of an iterative algorithm and does not have analytical formulations. Consequently, we
are drawing conclusions related to EMD based on numerical observations, which show the strong suitability of EMD as a
whitening tool for AIRS data (as is shown in the following figures). In all the figures that follow, the original distribution
of each of the three partitions are given in the first row and the EMD-transformed distributions are given in the second row.

Figure 3. Granule 9



Figure 4. Granule 151

Figure 5. Granule 193

4. APPLICATION OF ALGORITHM AND RESULTS

In this section, we review the details of our compression algorithm using channels indexed 1206-1502 of granule 182 (Asia,
Nighttime) as an example.



4.1. Whitening by EMD Method

As discussed in the previous section, we use IMFs to extract oscillatory features from our input signal > ��� � '�� .
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Figure 6. Oscillatory features shared by signals ��� ��� ��� .

Because we are not interested in all of the lower oscillations separately, we restrict ourselves to six IMF components
combining the last two IMFs ' +	� - � '�� and '&+ � '�� into a single function defined simply as ' +	� - � '���� '&+ � '�� when necessary.
Otherwise, the process is exactly the same as the sifting algorithm described in section 3. The result is a series of ”well-
behaved” frequency and amplitude modulated functions ')+ � '�� :
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Figure 7. Granule 182 EMD Components.

We then project the given granule (consisting of all discrete signals > ��� � '�� ) onto normalized EMD components �'(+ � '�� .
For each of the

�
EMD components, the projection coefficients � � +���?� � 7 @ �B89- >��?� � '�� �'(+ � '�� can be arranged in a 2D array

� � +�� �5��� � +����� � which are displayed in fig. 9:

The average > � '�� will be saved for use in the decompression procedure to compute the normalized EMD components
'&+ ’s as well as their duals �'&+ ’s. The projection coefficients � � +����� are generally speaking real-valued numbers and in order
to be saved in the finite number of bits, must be quantized. The residual granule consisting of

����� � '�� � >���� � '�� +
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+�89- ��

� +����� �'&+ � '�� #



where ��
� +����� are the quantized coefficients, is our ”whitened” data set as was shown in figures 3 to 5. Residual granule� - � � � ����� � is the input to the next step.
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Figure 8. Image of quantized coefficients ��������� � for 	�

����� .

4.2. KarhunenLoève Transform

Karhunen - Loève basis is an orthogonal basis � 
 + � 
+�89- that diagonalizes the symmetric, positive-definite covariance matrix� ���
� � ��� � � � � , where � is the expected value and � ��� is the � $ ’th vector from the residual granule

� �
. Each vector � �?� in� �

is a zero-mean due to the transformation in the step 2. The vectors 
 + are the principal directions (or eigenvectors) of C.
Karhunen - Loève (also known as PCA) is a very well-known transform used in compression as well as other applications
and a set of theorems about optimal properties of this transform, for example, can be found in. 1 In our experiments, we
have used 8, 22, and 13 principal components for channels 1-514, 515-1206, and 1207-1502 pristine channels respectively.
Below are eight out of 22 computed projection coefficients quantized and arranged in 2D arrays as in the previous section.
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Figure 9. Granule 182 Quantized KarhunenLoève Coefficients.



We should note at this point that arrays of the coefficients, as can be seen in figs. 9 and 8, comprise structured images
that can be further compressed. Compression of these images were not carried out in our work to address issues of potential
error propagation during transmission. This can be included if desired, and if properties of the communication medium
allow, to further increase the compression ratio.

4.3. Huffman Coding
We denote the probability that the (integer) element of the granule

� 1 is equal to an integer number
�

by � +���� �
� �������%�� � and the range of values in
� 1 by

� � ���  # � ���$� � , where
� ���  and

� ���$� are the smallest and largest values in
�

. The
Shannon Theorem � proves that the entropy
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� +������ 1 � +
is a lower bound of the average number of bits per symbol used to encode the values in

� 1 . The lower entropy bound is
nearly reachable with an optimized prefix code.The Huffman algorithm 6 is an example of such a prefix code that minimizes
the average bit rate 
 ����
�

+�8 
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where � + is the length of the
�

th code symbol. As was pointed out earlier, the probability distribution � + is very close to
normal, therefore the Huffman codebook � + can be constructed on the approximation

����� � +���� � 1! "� � # where # 1 is the
variance of the residual granule

� 1 . This way the only information needed to reconstruct the codebook is the variance and
the range

� � ���  # � ���$� � .
4.4. Results
In the table below, we give resulting compression ratios for our 10 test granules.

Granule Location Ratio
9 Pacific Ocean, Daytime 3.1653

16 Europe, Nighttime 3.1860
60 Asia, Daytime 3.1118
82 North America, Nighttime 3.2166
120 Antarctica, Nighttime 3.1169
126 Africa, Daytime 3.1065
129 Arctic, Daytime 3.2159
151 Australia, Nighttime 3.0603
182 Asia, Nighttime 3.0021
193 North America, Daytime 3.0827

REFERENCES
1. N.E. Huang, Z.Shen, S.R. Long, M.L. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung and H.H. Lui, The empirical

mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. Roy. Soc.
London A, Vol. 454, pp. 903–905, 1998

2. S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 1998
3. D. Huffman, A method for the construction of minimum redundancy codes. Proc. of IRE, 40:1098–1101, 1952
4. Z. Wu, N.E. Huang, A study of the characteristics of white noise using the Empirical Mode Decomposition, COLA

Technical Reports, Jan. 2003, 27pp.
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