
The MT Evaluator Virtual Machine: A Virtual Machine for
Pure Functional Languages

Steve M. O’Brien, Gregory P. Van De Moere, Joan E. Feeney, Kai H. Fan,
Peter M. Laurina, Kristine Joy S. Apon, Marco T. Morazán

Seton Hall University
Department of Mathematics and Computer Science

400 South Orange Avenue
South Orange, NJ 08544 USA

E-mail: {obrienst,vandemgr,feeneyjo,fankai,laurinpe,aponkris,morazanm}@shu.edu

ABSTRACT
The MT system is being developed as a test bed for differ-
ent design and implementation choices in the development
of a pure functional language with an all-software intelli-
gent distributed virtual memory system. The distributed
memory system allows for memory management to occur
in parallel with program execution. In order for a language
implemented using MT to fully take advantage of the perfor-
mance benefits of managing memory in parallel it must be
compiled instead of interpreted. In this article, we describe
work in progress on the MT evaluator virtual machine which
has been designed specifically to evaluate compiled code for
a pure list-based functional language. The MT evaluator is a
switched-based virtual machine that executes bytecode. We
describe the major components of the MT system and their
implementation in C++. Preliminary empirical evidence on
memory performance is presented.

1. INTRODUCTION
Programming languages that provide a very high-level of
abstraction, such as functional languages, have failed to be-
come part of the industrial mainstream of programming, be-
cause they are considered slow. Sequential functional lan-
guages have been rendered slow by poor interaction with
virtual memory[4, 7, 13]. Virtual memory interaction is af-
fected by the memory allocation algorithm, the paging al-
gorithm, and the type of garbage collection scheme used.
If memory allocation and garbage collection algorithms are
not carefully designed to conform with the expected access
patterns of the language then locality of reference can be
severely reduced causing excessive paging traffic and render-
ing the language slow. Parallelism has been used to make
functional languages faster by executing garbage collection
and program evaluation in tandem and by parallelizing user
code. As in the case of sequential functional languages, par-

Proceedings of MASPLAS’02
Mid-Atlantic Student Workshop on Programming Languages and Systems
Pace University, April 19, 2002

allel functional languages have not achieved their theoret-
ical potential due to the lentitude associated with copying
distributed data structures to access them locally and with
dereferencing non-local pointers[5, 8, 9, 10, 11, 12].

The MT architecture is based on an all-software DVM tai-
lored to the needs of a pure functional language [9]. The
basic computational unit is not a processor,instead, it is an
MT node. Figure 1 displays an abstract view of an MT
node. One processor executes the program (called the eval-
uator node) and the rest of the processors form a runtime
intelligent backing store that provides memory management
services to the evaluator. The backing store processors are
responsible for intra-node virtual memory and communica-
tion management.

The current MT architecture divides the DVM system into
four management networks based on the major data struc-
tures needed to evaluate a functional program: the MT
heap, the MT stack, the MT function space, and the MT
garbage collector. The current version of MT is implemented
without a garbage collector and the evaluator runs a string
based interpreter. The lack of a garbage collector has not
yet become a major concern, because the benchmarks used
to profile the system have not consumed all of the available
virtual address space. More importantly, there is empirical
evidence that strongly suggests the MT allocation algorithm
compactly stores list-based structures rendering the paging
performance of first-in first-out (FIFO) and the least recently
used (LRU) page replacement algorithms the same for MT
heap pages [9, 8, 10, 11]. For MT stack pages, LRU is supe-
rior to FIFO and a paging algorithm that implements LRU
without its costly overhead per access has been developed
for the MT stack and is described in [12].

The MT initiative is now focusing on replacing the string
based interpreter at the processor running the MT evalu-
ator with a virtual machine that evaluates compiled byte
code of functional programs. Interpreters are useful tools
for interactive program development, but for a system de-
signed for performance it is necessary to compile programs.
Unlike interpreted code, compiled code is efficient and fast
because it does not have to perform any syntactic analy-
sis at runtime and eliminates the need to unnecessarily save
values on the stack. In the remaining sections of this article,



GARBAGE COLLECTION
NETWORK

"
"

"
"

"
""

b
b

b
b

b
bb

HEAP
NETWORK

STACK
NETWORK

FUNCTION SPACE
NETWORK

EVALUATOR
NODEQ

Q
Q

Q
Q

Q
Q

Q
Q

�
�

�
�

�
�

�
�

�

Figure 1: Abstract view of the architecture of an MT Node

we describe the implementation of the MT evaluator virtual
machine and the different MT components in C++. We
present some preliminary empirical numbers that we have
collected and present ideas for future work in our conclud-
ing section.

2. THE MT EVALUATOR VIRTUAL MA-
CHINE

The principal class in the C++ implementation of the MT
Evaluator virtual machine is the MTmachine class. An in-
stance of this class builds the appropriate data structures
needed in a virtual machine. The MT evaluator virtual ma-
chine includes a heap object, a stack object, a function space
object, and a symbol table object. The classes that imple-
ment these objects are described in the following sections.

In addition, the MTmachine class has a set of registers and
implements a fetch-execute cycle. This set of registers, the
heap object , the stack object, the function space object,
and the symbol table object are all manipulated by the set
of MT primitives that make up the instruction set.

2.1 Registers
The registers store the state of the evaluator and control the
flow of the program. The registers are:

• pc: The ’program counter’ register contains the vir-
tual address of the next instruction to be executed.

• cont: The continue register contains the virtual ad-
dress of the instruction to which control is transferred
to upon execution of a branch or goto primitive.

• env: The ’environment register’ holds the virtual stack
address of the activation record for the current func-
tion being evaluated.

• newenv: The ’new environment register’ holds the
virtual stack address of the new activation record that

is being built to apply a user defined function to its
arguments.

• val: The ’value register’ stores the result of applying
any primitive or user-defined function.

• flag: The ’flag register’ holds a boolean value that is
accessed during the execution of branch instructions.

2.2 MT Primitive Instructions
There are 68 MT primitives some of which are specific for
functional languages and would not be needed by impera-
tive languages like C/C++ and Java. We can divide the
set of primitives into primitive value functions used to com-
pute a value and primitive control functions used to ma-
nipulate registers and the state of the machine. The set of
MT primitive functions includes the arithmetic operators,
the relational operators, the boolean operators, list opera-
tors (cons, car, cdr), tag operators (number?, symbol?, eq?
atom? null?, pair?), and a random number generator primi-
tive. These primitives expect their input to be stored on the
top of the stack. The primitives pop their arguments off the
stack and store the result in the val register. The cons prim-
itive differs from the other primitives, because it allocates
its arguments in the heap before returning the resulting list
S-expression in the value register.

The primitive control functions include the stack operators
(push, pop, and stackAccess), the save and restore opera-
tions for each register, the test-and-branch primitives, the
S-expression creation primitives, a read primitive, a print S-
expression primitive, and a goto primitive. The branch and
goto primitives change the value of the pc register to transfer
program control to a different part of instruction sequence.
The stack operators push and pop suffice to implement all
the primitive value functions. The stackAccess primitive is
needed to implement lexical addressing to access arguments
in an activation record created for a user-defined function.

Each MT primitive is implemented as a C++ function that
returns a boolean value indicating if the instruction was suc-



begin loop

fetch next instruction.

execute instruction.

if not(terminate?) branch begin-loop.

end loop

Figure 2: Pseudo-code for the Fetch-Execute Cycle

cessfully executed. This set of primitives suffices to imple-
ment any functional language. We expect, however, to add
primitives to make lambda operations and the manipulation
of first-class functions more efficient.

2.3 Code Execution
The basic algorithm of evaluation implements a fetch-execute
loop. At each step an instruction is fetched and executed.
The execution of an instruction changes the state of the ma-
chine by changing the value of a register and/or the heap,
the stack, and symbol table. Each primitive instruction up-
dates the pc after it has been executed. The cycle continues
until a primitive instruction fails to execute properly or the
pc reaches the end of the instruction sequence. The pseu-
docode for this loop is displayed in Figure 2.

When the fetch-execute cycle terminates without an error
the value computed is the only element on the stack. This el-
ement is then popped of the stack and printed to the screen.
If at any point, during the computation, a primitive instruc-
tion is unable to execute the loop is terminated and an error
message is displayed.

3. THE MT HEAP
The heap is used by the MT evaluator exclusively to store
lists. Heap memory is only allocated by executing the cons
primitive, which takes in two arguments, commonly referred
to in the Lisp world as the car and cdr. The result of a cons
operation is tagged as a list.

The virtual heap space is implemented as an array of pages
constituting the virtual address space and an array of frames
that hold the pages currently accessible. The number of
heap pages is much larger than the number of heap frames,
which is typical of a modern hardware architecture. A demand-
paging algorithm is implemented to swap data between the
pages and the frames creating the illusion of a larger memory
space than the one the machine actually has.

In the current version of the MT evaluator virtual machine,
the virtual address space is completely held at the evalua-
tor node. This is done for debugging purposes. Eventually
the heaps virtual address space will be distributed over sev-
eral computers in a Beowulf-type architecture [14]. The dis-
tributed architecture of the MT System allows paging man-
agement to be parallelized by shifting management routines
to its intelligent backing store.

The stack and code are kept as separate objects. No stack

or code data is stored in the heap, and vice versa, allow-
ing for separate paging policies for the different segments of
memory.

Each heap word can hold an S-expression. Heap memory
is allocated sequentially starting at 0 and is accessed us-
ing virtual addresses. The page number and offset of an
S-expression is calculated from the virtual address by us-
ing modular arithmetic and integer division. For exam-
ple, if a heap page size can hold 256 S-expressions and a
data item is stored in virtual address 317, we have that the
data item is on page 1 (317 DIV 256) with an offset of 61
(317 MOD 256). After computing the page number and
offset the page table is checked to see if the needed page is
currently held in a frame. If so, the memory can be accessed
directly from the frame. If not, the fault manager is called
to swapped in the needed page.

3.1 Heap Implementation in C++
The heapmem class contains the following instance vari-
ables used for paging management and to track performance.
These are:

• oldestframe: Holds the frame number containing the
page that has been held in the frame array for the
longest period of time. This variable is used by the
FIFO paging policy.

• heapfaults: This variable is used to record the num-
ber of heap faults.

• next: Holds the next virtual heap address to be allo-
cated.

• heapaccesses: A variable used to record the num-
ber of times the heap is accessed (any read or write
operation).

• heapallocations: A variable used to track the total
number of heap objects allocated.

• TIMESTAMPS[NUMOFHEAPFRAMES]: This
an array which is managed like a binary min-heap
(heapified every time a different page is accessed) to
implement LRU.

• frametable[NUMOFHEAPFRAMES]: An array
that stores the page numbers held in the frames.

• pagetable[NUMOFHEAPPAGES]: An array con-
taining a PageTableEntry for each heap page. The
PageTableEntry structure is defined below.

The heapmem class provides two public methods, getSexp(int
vaddress) and allocSexp(char tag, int v1, int v2), to access
and allocate heap data. The getSexp method returns the S-
expression at a given virtual address. If this virtual address
refers to a location not contained in the heap frames, the
fault manager is invoked prior to returning the requesting
data. The allocSexp method stores a new S-expression in
the heap created from its input.

The private methods of the heapmem class manage the vir-
tual address space and hide the details of implementation



struct Sexpdef struct PageTableEntry
{ {
char tag; int framenum;
int car,cdr; bool valid,dirty;
} }

Figure 3: S-expression and Page Table structures

from the virtual machine class. The most important pri-
vate method is the fault manager which has been written to
implement LRU and FIFO. Previous studies on MT using
a string-based interpreter for program execution concluded
that the paging performance of FIFO and LRU for MT heap
pages is virtually the same [8, 10, 12]. The overhead associ-
ated with LRU has made FIFO the preferred paging policy.

In order to reduce the overhead associated with LRU, we
are exploring an implementation that keeps pages ordered
using a binary tree implementing a min-heap. The top of the
binary min-heap always holds the least recently used page.
A trace is kept of the last n different pages that are accessed
is used to rebuild the heap to always find the least recently
used page quickly. This algorithm may be effective if the
working-set of pages changes slowly (i.e. exhibits a great
deal of locality of reference) and the heapifying process can
be performed by the heap management network.

3.2 S-expressions and Page Table Entries
Figure 3 displays the implementation of an S-expression and
a page table entry. An S-expression has a char that is used
as a tag. The tag of an S-expression identifies the type of
data it holds. The current tags supported for user prorgams
are integers, reals, list, function, and nil. Other tags defined
are only used internally by the MT machine for printing
S-expressions and pushing the values of registers onto the
stack.

Every heappagei has a page table entry at position i. Page
table entries have three fields. The valid field indicates if
the page is held in the heap frames. If so, the frame number
indicates which frame it is stored in. The dirty field indicates
if a page needs to be swapped out when it is elected for
eviction from the heap frames.

4. THE MT STACK
The MT stack is used for parameter passing and function
calling. In functional languages, efficient implementation of
stack memory can profoundly affect performance, because
function calling is prevalent and more common than in im-
perative languages. The MT stack holds S-expression struc-
tures instead of pointers to S-expressions as is common in
many Lisp/Scheme implementations [2, 3]. This strategy
increases locality of reference and list compaction [9]. The
eq? primitive is slightly more complicated, but the gains in
virtual memory performance justify this choice.

4.1 Implementation
The MT stack is an object defined by a class with 8 pub-
lic methods. They are push(), pop(), getStackEntry(), get-
StackTop(), getStackFaults(), getStackAccesses(), getNumOf-
Pushes(), getMaxStackTop(). The first four are used for
stack access and the latter are used to measure performance.

There are also 20 private methods used to manage the vir-
tual address space.

The stack virtual address space is divided into pages of
which only a small subset can be held at the processor run-
ning the evaluator at any given time. To compute the value
of a function, f, the arguments to f and any necessary flow
control information (e.g. return address) is pushed onto the
stack and then f is applied. A demand paging algorithm is
implemented to swap pages between the frames of the MT
evaluator and MT’s backing store for stack pages when a
fault occurs. We have implemented both FIFO and the MT
stack replacement algorithm [11] to verify that previous pag-
ing results using MT are still valid for the new system with
MT evaluator virtual machine.

The MT stack frames are implemented as an array of pages
where each page is an array of S-expressions. The stack
grows towards higher addresses as S-expressions for either
data or flow control are pushed. Since there are no local
function definitions in MT 1, activation records are accessed
in a strict LIFO manner making LRU an optimal page re-
placement algorithm [11]. The MT stack page replacement
algorithm was developed based on the proof that LRU is
optimal. In essence, it always swaps out the least recently
used page without having to time stamp pages. The reader
is referred to [11] for details.

5. THE MT FUNCTION SPACE
In the MT System, code space consists of six main objects:
code pages, code frames, a code page table, a code frame
table, a label table, and a function table. Each has a specific
purpose in managing the code during the execution of the
program. The code pages represent the entire code virtual
address space while the code frames contain a subset of code
pages. The code space and code frame classes have methods
used to manipulate code memory. The code frame table and
code page table each maintain needed information in order
to perform virtual memory management.

The CODE class has only two public functions: one that
performs the insertion of an instruction and one that re-
trieves an instruction. When the MT machine tells the code
space to insert an instruction it is placed sequentially in
the next available virtual address. Retrieval of an instruc-
tion consists of obtaining the location of a virtual address
from within the code space and returning the instruction to
the MT machine. Having only those two functions available
publicly allows the details of how code space is implemented
to be hidden from the MTmachine class.

The label table maintains the labels of the code generated
by the compiler. A label marks a location in the code for use
with branch statements and goto’s. The label table main-
tains a hashed list of label names and the associated index
into the code. The index into the code is the first instruction
that the program will run when told to jump to that label.
This allows the use of loops and recursion in a program.

A function table stores the names of user-defined functions.

1Local functions definitions can be removed through a pro-
cess called lambda-lifting [6]



It is similar in structure and design of the label table. It
contains a virtual address into the code space where the
function begins and an integer value of the number of pa-
rameters the function needs. The function names are hashed
into an array for fast access to the information associated
with it.

Three paging algorithms have been implemented to work in
code space: FIFO, LRU, and a double linked circular list
version of LRU. FIFO is implemented as the standard first
in, first out algorithm and LRU is the a standard least re-
cently used algorithm. The third algorithm uses LRU in
determining which page will be swapped out when a page
fault occurs, but it stores the ages of the frames differently
than the typical LRU. The ages are stored in a separate data
structure keeping all the other information on the frame ta-
ble. The ages are stored in a double linked list structure
where the order the elements are in represents the age of
the frames. Each element of the linked list contains an in-
dex corresponding to the frame it represents. The three al-
gorithms are being compared and contrasted to each other.
As programs are developed using the MT machine, test data
is being gathered to determine which algorithm is the most
efficient.

6. THE MT SYMBOL TABLE
The MT-evaluator uses a hashed symbol table to store non-
boolean non-numeric primitive type data. Symbols are used
extensively by functional programmers to do symbolic com-
puting. Symbols in MT are also used to store function names
and labels into the instruction sequence. As discussed in
the previous section, function and label symbols are used
for flow control and these are kept in a separate table from
symbols used by a programmer.

The symbols in the MT evaluator virtual machine are rep-
resented by a data structure containing a key, a string, the
length of the string, and the status of the symbol. The key
is an integer that is used to identify the symbol and deter-
mines where the symbol is hashed. The string represents
the printable version of the symbol. The length stores the
length of the string representation of the symbol. Finally,
status indicates if a symbol entry is in use.

The symbolTable class contains an array of symbols and
methods to manage and access the symbol table. Every
symbol is hashed into the array by generating a numerical
identifier (the key) based on the string representation of the
symbol. The key is passed as input to a hashing function
that returns the address in which the symbol is to be stored.
If there is a collision, the hashing function is re-applied until
a free symbol table entry is found.

The symbolTable class tracks the number of unsuccessful ac-
cesses to the symbol table during program execution. These
may arise when two or more symbols are hashed to the same
location. This number will be a good indicator of hashing
performance, because the amount of time needed by the
hashing function is constant. We have implemented two
hashing functions: linear hashing and double hashing. To
test out the efficiency of each function, random symbols were
generated for different sizes of the symbol table. Preliminary
data is presented in the next section comparing the number

(define (mklist n)
(if (= n 0)
’()
(cons (random n) (mklist (- n 1)))))

Figure 4: Code to create a list of n random numbers.

of collisions generated by linear hashing and double hashing.

7. EMPIRICAL RESULTS
In this section, we present preliminary empirical data col-
lected using the MT evaluator virtual machine. We present
one example of data collected for the heap and stack us-
ing a hand-compiled function to create a list of 200 random
numbers. We also present data comparing the performance
of our linear and double hashing functions for the symbol
table.

7.1 Creating a List of Random Numbers
We hand-compiled the Scheme function displayed in Figure
4 and used it to create a list of 10000 random integers. The
heap and stack pages each stored 512 S-expressions. The
number of heap and stack frames were both set to 10.

The compiled code (printed with labels and comments) is
displayed in Figure 5.

Table 1 presents data on the heap and stack performance
under FIFO as the page replacement algorithm for each.
Heap and stack pages do not share a common pool of frames.
That is, a stack page could not displace a heap page and vice
versa. The fault rate is defined as faults

accesses
. As expected,

FIFO is a competitive page replacement algorithm and the
number of stack accesses is much higher than the number
of heap accesses. The reason for this is that the MT stack
holds actual values instead of pointer to values. In a system
where the stack holds pointers to data we would expect heap
accesses to be higher for mklist.

The maximum height the stack reaches is 30005. Com-
paring the number of allocations with the maximum stack
height suggests that the stack should not be heap allocated
as is done in some functional languages (e.g. SMLNJ [1]).
The stack memory can be recycled without having to call
a garbage collector. Furthermore, if the stack were heap-
allocated the paging performance of the heap would degrade
by having garbage stack allocations intertwined with live-
data.

The data in this example demonstrates the type of experi-
ments we can run. The system will be used to design the
distributed virtual memory system of the heap, stack, and
code space.

7.2 Symbol Hashing Performance
Table 2 displays performance data for linear and double
hashing of randomly generated symbols into the symbol ta-
ble. We measured the number of collisions generated by
inserting 100-900 (in increments of 100) symbols into tables
of different sizes. Table 2 displays the average over all exper-
iments. This preliminary data suggests that linear hashing
causes up to 28% more collisions than double hashing. The



Structure Accesses Faults Fault Rate Allocations
Heap 40000 60 0.0015 20000
Stack 270013 99 0.0004 120006

Table 1: Heap and stack data for (mklist 10000)

Inserted Elements Linear Hashing Double Hashing
100 3 3
200 11 11
300 24 21
400 43 40
500 67 65
600 104 94
700 140 125
800 199 181
900 330 238

Table 2: Collisions for Linear Hashing vs. Double Hashing

performance gap between linear hashing and double hashing
grows larger as the number of symbols inserted into the sym-
bol table increases. The number of collisions under double
hashing, however, grows faster than the number of collisions
under linear hashing as the table becomes fuller. This may
suggest that as the number of symbols inserted increases,
linear hashing may perform better than double hashing. At
this moment, however, we have not gathered enough empir-
ical evidence to reach a conclusion.

8. FUTURE WORK
The MT evaluator virtual machine has been designed to re-
place a string-based interpreter used in previous implemen-
tations of the MT system. The evaluator is a switch-based
virtual machine that executes instructions that are byte en-
coded. The virtual machine is intended to execute code
produced by a compiler for any functional language that
uses applicative-order evaluation. That is, all arguments
to a function are evaluated before the function is applied.
This evaluation contrasts with functional languages, such as
Haskell, that use lazy evaluation.

The MT evaluator virtual machine will be used to continue
fine tuning the paging performance of the MT heap and
the MT stack. In addition, it will serve as the first MT
platform in which the paging properties of code space can be
studied. This work will help develop a model that explains
how functional languages access memory.

9. REFERENCES
[1] Andrew W. Appel and Zhong Shao. An Empirical and

Analytical Study of Stack vs. Heap Cost for
Languages with Closures. Department of Computer
Science,CS-TR-450-94,Princeton University, 1994.

[2] D. Bartley and J.C. Jensen. The Implementation of
PC Scheme. In Proceedings of the 1986 ACM
Conference on Lisp and Functional Programming,
pages 86–93, Cambridge, Massachusetts, 1986.

[3] S.E. Fahlman and D.B. McDonald. Design
Considerations for CMU Common Lisp. In Peter Lee,
editor, Topics in Advanced Language Implementation,

pages 137–156, Cambridge, MA, USA, 1991. MIT
Press.

[4] Robert R. Fenichel and Jerome C. Yochelson. A Lisp
garbage-collector for virtual-memory computer
systems. Communications of the ACM, 12:611–612,
1969.

[5] B. Goldberg. Multiprocessor Execution of Functional
Languages. PhD thesis, Department of Computer
Science, Yale University, New Haven, Conneticut,
1988.

[6] T. Johnsson. Lambda lifting: transforming programs
to recursive equations. Proceedings of the IFIP
Conference on Functional Programming and Computer
Architecture, ed. Jouannaud, LNCS 201, 1995.

[7] David A. Moon. Garbage Collection in a Large Lisp
System. Proc. of the 1984 ACM Symp. on Lisp and
Functional Programming, pages 235–246, 1984.

[8] Marco T. Morazán and Douglas R. Troeger. A Case
Study of Heap Paging in the MT System. In Markus
Mohnen and Pieter Koopman, editors, Proc. of the
12th Workshop on Implementation of Functional
Languages, pages 201–214, Aachen, Germany, 2000.
Aachener Informatik-Berichte.

[9] Marco T. Morazán and Douglas R. Troeger. The MT
Architecture and Allocation Algorithm. In Phil
Trinder, Greg Michaelson, and Hans-Wolfgang Loidl,
editors, Trends in Functional Programming, volume 1,
pages 97–104, Bristol, UK, 2000. Intellect.

[10] Marco T. Morazán and Douglas R. Troeger. A Case
Study of List-Memory Paging in a Distributed
Memory System for Functional Languages. In
Martin A. Musicante and E. Hermann Haeusler,
editors, Proc. of The 5th Brazilian Symposium on
Programming Languages, pages 80–95, Curitiba,
Brasil, 2001. Universidade Federal do Paraná.

[11] Marco T. Morazán, Douglas R. Troeger, and Myles
Nash. Designing an All-Software Based Distributed
Virtual Memory: The Paging Performance of The MT



start ; starting label
SETCONT ”DONE” ;cont = DONE label
SETENV 0 ;env = address of activation record
SENV ;save env on the stack
SCONT ;save cont on the stack
MKINTSEXP 200 ;push 200 (initial value of n)
GOTO ”mklist” ; pc = mklist

mklist ; label mklist
SACC 2 ;get n from stack
SVAL ;save val onto the stack
MKINTSEXP 0 ;push 0 onto the stack
BRE ”mklistbase” ;if n == 0 branch to mklistbase
STOP2NENV ;newenv = address of new activation record
SENV ;save the env register
SETCONT ”mklistaccum” ;cont = label mklistaccum
SCONT ;save the cont register
SACC 2 ;access the value of n
SAVEVAL ;save n on the stack for MINUS
MKINTSEXP 1 ;push 1 on the stack
MINUS ;subtract 1 from n
SAVEVAL ;save n-1
NENV2ENV ;env = address of new activation record
GOTO ”mklist” ;loop to mklist

mklistbase ;label mklistbase
POP ;pop the top element on the stack
RCONT ;restore cont register
RENV ;restore env register
MKNILSEXP ;push nil on the stack
CONT2PC ; goto instr pointed to by cont register

mklistaccum ;label mklistaccum
RANDOM ;generate a random number
SAVEVAL ;push random number on the stack
SACC 3 ;get the cdr of the list
SAVEVAL ;push the cdr on the stack for cons
CONS ;create new list
POP ;pop the cdr
POP ;pop n
RCONT ;restore cont register
RENV ;restore env register
SAVEVAL ;save the new list
CONT2PC ;goto instr pointed to by cont register
donelabel ;label donelabel

Figure 5: Compiled code for mklist

Stack. In Silvia Teresita Acuna and Cecilia Maria
Laserre, editors, Proc. of The 1st Iberoamerican
Conference on Software Engineering and Knowledge
Engineering, pages 109–120, Buenos Aires, Argentina,
2001. Universidad Nacional de Jujuy (Editorial
UNJU).

[12] Marco T. Morazán, Douglas R. Troeger, and Myles
Nash. Paging in a Distributed Virtual Memory. In
Kevin Hammond and Sharon Curtis, editors, Trends
in Functional Programming, volume 3, pages 75–86,
Bristol, UK, 2002. Intellect.

[13] Robert A. Shaw. Empirical Analysis of a Lisp System.
PhD thesis, Department of Computer Science,
Computer Systems Laboratory, Stanford University,
Stanford, California, 1988.

[14] Thomas L. Sterling, John Salmon, Donald J. Becker,
and Daniel F. Savarese. How to Build a Beowulf: A
Guide to the Implementation and Application of PC
Clusters. Scientific and Engineering Computation.
MIT Press, 1999.


